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INTRODUCTION

Cities are becoming more complex due to recent 
developments such as rapid urbanization and green 
open spaces implemented as urbanism solutions. 
Understanding the complexity based on these new 
developments calls for innovative spatial analysis 
techniques and digital representation methods. A 
number of innovative analysis techniques and repre-
sentations have been offered within the space syntax 
methodology. Space syntax developed by Bill Hillier 
and Julianne Hanson in 1984,1 is considered a ro-
bust theory portraying urban morphologies in terms 
of human spatial activity distributions. Its quantita-
tive spatial analysis techniques have made an inno-
vative leap within the urbanism theories based on 
‘space paradigm,’ which was shaped by a group of 
urbanists understanding spatial complexity of cities 
in terms of human spatial experience in spaces be-
tween buildings.2,3,4 With the latest advancements in 
its methods of modeling spatial activity, space syn-
tax offers a rigorous methodology to forecast poten-
tial movement distributions in cities based on street 
network properties. Street network analysis is based 
on graph theory and consists of calculating topo-
logical relations among spatial units. Computational 
modeling of street network takes street segments as 
spatial units and calculates the connectivity among 
them. Using the connectivity algorithms, the analy-
sis to estimates how likely street segments become 
destination points (to-movement) or thoroughfares 
(through-movement) that attract movement due to 
their relations with other segments. 5 

Despite its robustness, street network analysis re-
mains limited in its ability to capture potential move-

ment distributions in cities containing grater spatial 
complexity due to non-organic development pat-
terns. Green open spaces or plazas that have em-
blematic prominence may also attract movement due 
to their qualitative content such as effects of green-
ery on people’s well-being. Exploring the effect of 
attractors, such as building density and green open 
spaces, is central to predicting the dynamic and com-
plex spatial conditions in cities and thus being able to 
understand the implications of dramatic changes in 
cities. With this in mind, this paper introduces a new 
approach to analyze potential spatial activity distri-
butions at a finer grain by accounting for complex 
factors beyond street network properties.

Recent studies investigating more informative and 
detailed modeling approaches for spatial activity 
distribution argue that geometric differentiation, 
building density and other program related prop-
erties may impact spatial activity over the effect 
of street connectivity. We propose a new analysis 
approach to predict spatial activity distribution as 
a function of other programmatic and environmen-
tal contents of streets in order to augment existing 
spatial modeling techniques. This new analysis ap-
proach, based on Markov chain models,6 has been 
applied in several domains with great success.7,8,9 
A specific benefit of the Markov chain approach is 
that there are mature and widely available com-
putational techniques that support the analysis of 
these models. (See the Matlab software tool avail-
able at www.matlab.com, for example.)

This paper discusses the following questions. (1) 
How well does the street network analysis capture 
spatial activity distributions? (2) What other fac-
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tors may influence movement distribution in cit-
ies beyond the effect of network? (3) How can a 
new analysis technique based on the Markov chain 
model detect the effect of these factors? 

We investigate these questions as follows. In the 
section immediately following we review previous 
studies into representations capturing urban com-
plexity and associated spatial activity distributions. 
In Section 3 we discuss how the latest analysis 
techniques in space syntax theory account for spa-
tial activity distributions in cities. In Section 4 we 
discuss two representative cases where street net-
work relations may not be primary determinant of 
movement. In Section 5 we introduce the Markov 
chain mathematical model and we discuss its rele-
vance to address limitations of previous approach-
es in capturing less-tangible and complex predic-
tors of movement. The final section discusses the 
departure points the Markov chain could offer for 
understanding complex urban conditions and de-
velopment patterns.

EXPLORATIONS ON URBAN COMPLEXITY 
AND ITS REPRESENTATION

Urbanism theories emerging in mid-twentieth cen-
tury emphasize space and spatial experiences as an 
alternative to reading urban environment in terms 
of formal compositions. This emphasis upon space 
have been a common denominator in the works of 
geographers such as Edward Soja, David Harvey as 
well as architects Bernard Tschumi, Rem Koolhas 
and other urban theorists such as Jan Gehl, Wil-
liam H. White, and Jane Jacobs, who are interested 
in spatial and programmatic complexity of cities. 
Bernard Tchumi explored spatial complexity in the 
disjunctions of space, form and events. While ar-
guing that there is no space without ‘events’ (or 
programmatic elements), Tschumi still uses formal 
compositions to express spatial complexity. His 
Parc de La Villette project expresses spatial com-
plexity through tensions, and conflict between su-
perimposed formal systems (1995). 10 Within such 
explorations, Bill Hillier’s and Julianne Hanson’s 
space syntax framework (1984) becomes a depar-
ture in understanding spatial complexity of cities 
without falling into restrictive language of forms, 
yet in terms of movement that can be generated 
within the network of spatial components.  

With its thrust on graph theory and quantitative ex-

pressions of relational aspects of configurations, the 
space syntax framework has gained a more promi-
nent role as a modeling and forecasting framework 
that can inform design and planning in addition to 
being a design style. Despite the highly informative 
digital representations of quantitative street net-
work analyses, space syntax modeling of cities is 
far less subjective than the representative mapping 
and diagramming of people’s spatial experiences 
promoted by designers like James Corner. 11  

Due to its abstract and quantitative nature, space 
syntax methodology, and street network analysis in 
particular have some limitations in predicting com-
plex conditions such as effects of programmatic 
elements on movement. A number of researchers 
have discussed these limitations in various con-
texts and proposed new modeling applications. Ra-
ford (2009) discusses the limitations of space syn-
tax are particularly in response to the urban design 
and planning practices in North America, which 
do not align with organically growing cities where 
space syntax theories derived. North American cit-
ies have the phenomenon of planning with mobility 
through highways, which connects settlements in 
non-spatial ways.12 Another group of studies ad-
dresses limitations associated with the abstract 
nature of space syntax street network modeling. 
They develop counter arguments to Hilllier’s (2008) 
proposition that location of attractors is a function 
of space network relations. 13 Ratti (2004) argues 
that factors such as building density and geometry 
of the urban block are undetected in street network 
analysis despite the potential effect of these factors 
on movement.14 In his later work, Ratti (2005) sug-
gests some applications that can detect the effects 
of building density and three dimensional sight 
lines. The effect of other potential attractors such 
as building density, land-uses and environmental 
information are addressed more directly by Ståhle 
(2007, 2008) and Sevstuk (2010) within their pro-
posed analysis applications.15,16 Ståhle models an 
analysis application, by combining the space syntax 
methodology with geographic information systems 
in order to capture environmental and contextual 
factors actually shaping people’s understanding of 
a place. More recently, Sevstuk (2010) develops 
a comprehensive analysis model analyzing loca-
tion of retail activity based on an array of variables 
including visibility, accessibility, density, adjacency 
and geometry of build environment.



663MODELING SPATIAL ACTIVITY DISTRIBUTIONS

Previous explorations into spatial and programmat-
ic complexity of cities and recent discussions on the 
effects of programmatic elements confirm the need 
for improvement in the spatial analysis approaches 
detecting how attractors, such as building density, 
natural settings and geometric shape may influ-
ence movement. Our argument is that these at-
tractors may make a difference in the way in which 
street networks are read and prioritized by human 
cognition. In an effort to develop more informative 
spatial analysis models, we propose integrating 
space network analysis with another mathematical 
model, namely the Markov chain model. 

MODELING MOVEMENT ECONOMIES IN 
CITIES ON THE BASIS OF STREET NETWORK 
RELATIONS 

The theoretical ground of the space network meth-
odology relies on expressing the knowledge of space 
neither entirely in terms of form nor of human ex-
perience, but in terms of interactions between hu-
man and built environment.17 This interaction is 
understood within formulations of human spatial 
activity by network relations among spaces. These 
network relations are modeled as graphs that refer 
to collections of set of nodes and links. In graph 
representations of configurations, nodes correspond 
to spatial units (rooms, street segments) and links 
represents transitions and connections among those 
spatial units. The hierarchical relationships among 
those spatial units are calculated within connectivity 
algorithms among the nodes, which is independent 
of geometrical shape and size of the units. These 
connectivity algorithms fundamentally express the 
degree to which each spatial unit is connected to 
neighboring units (local/connectivity), and the en-
tire configuration (global/integration). 18, 19

Space syntax theory, therefore, explains distribu-
tions of human spatial activity on the basis of how 
well streets are connected to their neighborhood 
or the entire city. The theory suggests that streets 
or their segments that are reachable from all other 
segments by involving the fewest number of other 
spaces attract movement. Recent advancements in 
street network modeling propose that street seg-
ments that are reached within the least number of 
turns and minimum sum of angular change are like-
ly to be destination points (Fig.1). This proposition 
suggests that movement is generated by an econo-
my minimizing the cost of a journey within a street 

network. The street segment analysis based on least 
number of turn and minimal angular change showed 
better correlations with actual human activity in dis-
tricts of London.20 Accordingly, this theory and par-
ticular propositions of angular segment analysis also 
explain the concentration of land-uses, in particular 
commercial activity in certain centers. Land-uses in 
other words are programmatic elements that are in 
fact economic entities also migrate those integrated 
or highly preferable destination points.  These pro-
grammatic elements, such as shopping centers and 
other commerce also attract movement. Therefore, 
movement in cities is distributed within the synergy 
created between space network and programmatic 
attractors. The theory suggests movement is mainly 
determined by the space network which also deter-
mines the position of attractors. In other words, “the 
configuration of the space network is, in and of itself, 
a primary shaper of the pattern of movement.” 21

This proposition disregarding the independent ef-
fect of programmatic and other possible attractors 
on movement is where space syntax is challenged 
within the academic community. The counter argu-
ment is that the prediction of spatial activity merely 
by street network remains too simplistic, as hu-
man spatial activity is actually influenced by a set 
of variables including perceptions of building size 

Figure 1.  Segment analysis model, showing the main 
structure of global routes in London. Reddish colors show 
the segments that are most likely to be thoroughfares. 
(source: Hillier (2009)).22 “Spatial Sustainability in Cities: 
Organic Patterns and Sustainable Forms.” Paper presented 
at the 7th International Space Syntax Symposium, 
Stockholm, 2009.) 
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and density, metric distance, geometric shape and 
environmental content, defined within spatial com-
plexity of cities. Despite acknowledging the partial 
role of programmatic elements as attractors, space 
syntax theory accepts street segments as discrete 
units that have same or similar content within a skel-
etal system. Moreover, the theory establishes paral-
lels to the way our spatial cognition works in choos-
ing paths within these skeletal system. 23 Within this 
abstract representation, spaces between buildings 
such as streets, squares, segments and other open 
spaces are differentiated only in terms of how easily 
they are reached within a network. When program-
matic and environmental content of these spaces are 
taken into consideration, space syntax modeling of 
cities is only a layer of representation, which can be 
completed with analysis of various other factors such 
as land-use data, population, building densities, and 
environmental content.

OTHER FACTORS SUCH AS PROGRAMMATIC 
ATTRACTORS PREDICTING MOVEMENT 
DISTRIBUTIONS

These districts may have highly concentrated spa-
tial activity despite their segregated position in the 
street network. The high concentration of spatial ac-
tivity in those centers may not be explained within 
street network modeling unless multiple transporta-
tion routes these centers might receive, such as sub-
ways and motorways are included in the modeling.  
However, we can argue that those centers work as 
attractors primarily due to intense programmatic in-
fluence and less due to their strategic position in the 
conventional street network. 

An example of such a business district is La De-
fense in Paris, as discussed by Ratti (2004). This 
district was willfully created outside of the historic 
city center.24 Another example is 4th Levent in Is-
tanbul which was first developed with residential 
projects in the 1950s and continued with high rise 
commercial and office buildings. Although the loca-
tion of the 4th Levent district is relatively peripheral, 
the district attracts spatial activity more than space 
syntax analysis may suggest (Fig. 2).  

Another case where movement distribution may not 
be sufficiently explained solely by street network 
analysis covers urban environments with green open 
spaces such as city parks. Recent park projects offer 
more fluid relationships with the urban fabric and 

flexible uses within green spaces.25 This new design 
capacity makes those parks potentially strong at-
tractors of movement, especially in overcrowded cit-
ies where people’s interaction with natural settings 
are otherwise limited (Fig.3).

Figure 2.  Map of Istanbul marking (A) location of 4th 
Levent district (top image); aerial view of 4th Levent 
district (bottom image, photo:  Ferad Zyulkyarov

Figure 3.   Central Park, New York, 2008 (photo: first 
author).
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While attraction to parks with natural settings may 
depend on other factors including design and other 
programmatic activities offered, a number of find-
ings in environmental cognition reinforce our iden-
tification of parks with natural settings as possible 
attractors. These findings suggest that natural set-
tings impact mental activities, attitudes and actions, 
as these settings prompt fascination and restorative 
break from work related routines. 26,27 Parks with 
natural settings may be perceived as prominent el-
ements and registered differently in our cognition 
when experiencing a city. Thus some streets and 
their leading routes may have a different effect due 
to their environmental content.28 People also de-
velop internal representations based on for example 
whether street segments have strong boundary con-
ditions or not.29, 30 This argument holds true when ac-
tual spatial experiences of  people, which is based on 
understanding space gradually, is taken fundamental 
to modeling movement distribution, instead of  theo-
retical and “top-down” reading of street network. 31 
From this point of view, considering the green open 
spaces as attractors of spatial activity challenges 
the abstract nature of street network analysis where 
spatial entities are removed from their environmen-
tal contents. The capacity of green open spaces to 
impact movement motivates the need for a finer 
grain analysis where spaces can be read differently 
based on their spatial definition through natural or 
built elements. 

There are other possible influencers beyond build-
ing densities and green open spaces.  Declining eco-
nomic activity in post-industrial cities may cause an 
opposite trend where street networks are no longer 
meaningful in predicting movement patterns where 
there is no programmatic content associated with 
space. The potential effects of green open spaces 
on movement, on the other hand, hold true par-
ticularly when environmental sources and interac-
tion with nature appears to be a rare opportunity 
for residences in overcrowded cities. In cities, resi-
dential zones with natural settings gain greater eco-
nomic value and thus can be the source of uplifting 
the conditions of high density urban environments. 
Exploring whether green open spaces attract people 
and create another layer of movement economy can 
lead to an understanding of the influence of urban 
greening on gentrification in cities. The urban condi-
tions discussed here calls for a more detailed and 
informative modeling of potential spatial activity 
within city morphologies.

A NEW MODELING APPROACH DETECTING 
THE EFFECT S OF PROGRAMMATIC AND 
ENVIRONMENTAL CONTENT OF SPACE

In this section, we introduce a general analysis 
model to explain movement with factors other than 
(yet in addition to) street networks, such as strong 
programmatic and environmental content exempli-
fied with two cases above. We propose an analysis 
approach based on the Markov chain probabilistic 
model that can weight spatial units based on their 
programmatic and environmental content along with 
their network properties. This approach uses the 
Markov chain paradigm to enable normalized weigh-
ing in probabilistic models of movement distribution. 

Markov chains are a discrete-state representation 
of how behavior of entities (such as humans) tran-
sitions from one state to another over time.32 Mar-
kov chains have been widely used in diverse fields 
to model state transition dynamics to generate pre-
dictive analyses of short- and long-term behaviors 
in both simple and complex systems. These pre-
vious applications include performing speech rec-
ognition, predicting optimum Internet search re-
sults and detecting behavior of computer infections 
spread by the Internet. .33,34,35 There are abundant 
mathematical 36 and computational (www.mathlab.
com) tools to analyze and generate predictions 
from Markov Chain models. The Markov chain for-
malism provides a promising approach to model 
dynamic space usage that incorporates normalized 
weightings of attractors’ impact on path choice to 
predict long-term behavior. 

The basis of the Markov chain approach is a proba-
bilistic model of the transitions between units and 
entities. The model establishes the potential use of 
street segments, for example, within the probabi-
listic values expressing normalized weights given to 
each street segment or other spatial units. Figure 4 
contains a representation of how a pedestrian might 
move between various spatial units in a (very) small 
city block. The labeled circles in Figure 4 represent 
the location states of the pedestrian and the direct 
arcs represent how the pedestrian could move from 
one state to another.  In Figure 4 there are five spatial 
units: Building 1, Building 2, Street 1, Street 2 and 
Park 1.  The directed arc from Building 1 to Street 1 
in the model represents that it is physically possible 
to move from Building 1 to Street 1. (The arcs cor-
respond to links in the mathematical graphs used in 
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conventional space syntax analysis).  According to 
the model in Figure 4, it is possible for a pedestrian 
to go from Building 1 to Park 1 by going from Build-
ing 1 to Street 2 and then from Street 2 to Park 1.

By convention, every spatial unit has an arc that 
loops back to itself. This self-arc is to represent that 
pedestrians can also stay in their state location if 
they choose to do so.  These self-arcs thus repre-
sent the possible hierarchical benefits of our Markov 
chain approach – each state location may be com-
prised of internal state locations. In other words, 
each state location may have attracting power and 
thus motivate movement to be concentrated in that 
location. A street may consist of multiple storefronts 
and a more detailed model could represent that it 
is possible for a pedestrian to move between and 
pause at storefronts along the street.  We could im-
prove our high-level state transition model in Fig-
ure 4 by replacing the street states with another set 
of state transitions to represent how a pedestrian 
could pause at individual stores.

We use the state transition model in Figure 4 to build 
the Markov chain model seen in Figure 5.  A Markov 
chain captures the “probability” or “likelihood” of var-
ious state transitions occurring. For the Markov chain 
model in Figure 5 we label an arc from one spatial 
unit to another with the probability of a pedestrian 
moving from that first spatial unit to the other over 
a given time period. The example in Figure 5 repre-
sents that a pedestrian starting in Building 1 has a 
70% probability of staying in the building, a 10% of 
moving to Street 1 and a 20% probability of moving 
to Street 2 over any given time period.

Once we have a Markov chain model of pedestrian’ 
movements as exemplified in Figure 5, we can per-
form extensive analyses to estimate for example the 
likelihood that a pedestrian is in any given spatial 
unit at any given time, the likelihood that a pedes-
trian will eventually visit a spatial unit within some 
time period, or the likelihood of a pedestrian choos-
ing a particular path between two spatial units using 
common mathematical37 and computational (www.
matlab.com) tools. We can also aggregate the pe-
destrian model to predict the likelihood of specific 
locations becoming crowded given that there are 
many pedestrians. 

The major challenge and benefit of Markov chain 
modeling lie in the identifying the probability la-
beling of the arcs. There are a number of statis-
tical and mathematical approaches to estimating 
these weightings based on experimental observa-
tion.38 The weights in the Markov chain can be as-
signed based on sampled traffic analysis, among 
other methods.  For sampled traffic analysis, we 
may sample the historical movement paths of pe-
destrians to estimate the state transition probabili-
ties. For example, we may sample 100 visitors to 
Building 1 in a specific time period and observe that 
70 stay in Building 1, 20 move to Street 2 and 10 
move to Street 1.  From this sampling we would 
assign the state transition probabilities of 0.7, 0.2 
and 0.1 respectively of staying in Building 1, mov-
ing to Street 2 and moving to Street 1.  

We can also assign weightings based on psycho-
logical models as well as space network models.  
For example, in a space network model we can use 
the angular integration and choice measures39, 40 to 
assign weightings on street segments. Addition-

Figure 5. A Markov Chain Model of State Location 
Transitions near a Park

Figure 4.  Logical State Location Transitions near a Park
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ally, the Markov chain model allows weightings on 
the basis of other quantifiable values of attractors, 
such as building size and density, as well as at-
tracting power of green open spaces. For example, 
while some street segments can have normal-
ized weightings based on their network proper-
ties such as angular integration and choice mea-
sures, weightings can also be assigned for high 
rise commercial buildings, attractiveness of green 
open spaces or their any other programmatic and 
environmental content. One caveat is that to cal-
culate the attracting power of green open spaces 
on the basis of environmental cognition studies ac-
counting people’s cognitive patterns. The attracting 
power of parks could be defined within quantitative 
measures based on further research on park size 
and other design and natural diversity variables 
that influence effect on people’s behavior. 

Markov chains could be validated using standard 
approaches currently used in other domains. Some 
of these standard approaches are further sampling 
of pedestrian movements in the modeled space 
and generating predictive movement probabilities 
distributions over multiple time frames in order to 
confirm that these patterns match observed reality 
of groups of pedestrians and the current theory.

CONCLUSIONS

Our discussion of the Markov chain model pres-
ents the first insights from an ongoing investigation 
into how to predict spatial activity distributions in-
fluenced by other than street networks. The space 
syntax framework has an established place within 
other urbanism models derived from space para-
digm. Yet, the street network analysis of space syn-
tax has some limitations stemming from the abstract 
nature of modeling potential spatial activity distribu-
tions merely on the basis of relational aspects. This 
model remains as an abstract representation against 
complex set of factors that may also influence dis-
tribution of spatial activity. More importantly, street 
segment modeling based on the fewest number of 
turns and least angular change make the most sense 
for cities such as London that have grown organically 
and show a certain degree of uniformity in term of 
building densities. The Markov chain model can be 
particularly useful to analyze movement distributions 
in cities that have had less organic development pat-
terns, shaped with top-down planning decisions or 
eclectic zoning rules. Such development patterns 

may manipulate movement beyond the patterns 
generated by street networks. The environmen-
tal content of spaces, such as natural settings may 
work as an attractor of movement as these settings 
become increasingly valuable for spatial experience 
and social interaction patterns in overcrowded cities. 
Analyzing the movement distributions influenced by 
such complexities can aid exploring the implications 
of developments such as higher density in segregat-
ed locations, decaying central districts, and move-
ment economy manipulated by green open spaces.

The Markov chain model differs from street net-
work analysis in a number of ways. First, the Mar-
kov chain approach can account not only for streets 
but also for buildings and open spaces as spatial 
entities where people can pass through or loop 
back. Second, the Markov chain approach takes 
movement as a function of probabilistic model de-
termined by network properties, programmatic and 
environmental content of street segments and oth-
er spatial units. Third, the Markov chain approach 
gives researchers the opportunity to manipulate 
the analysis model based on the relative effects 
of the spatial units due to their programmatic and 
environmental content. Utilizing the Markov chain 
formalism, our proposed analysis allows for nor-
malized weightings of streets and other spatial 
units, based on network properties as well as pro-
grammatic and environmental attractors contained 
within those spatial units.

Motivated by these first insights, our discussion 
intends to improve upon previous spatial analysis 
approaches to be able to analyze complex and dy-
namic spatial conditions of cities. Further research 
is needed and is ongoing to elaborate this model to 
precisely determine the relative importance of at-
tractors and other properties. 
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